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Abstract: - This paper presents the approximate general solution of the axi-symmetric, two-degree of freedom 
dynamical system of the coupled non-linear double oscillator corresponding to a third order polynomial 
potential. The general solution is approximated through a set of initial conditions that generate symmetric 
periodic solutions and a set of initial conditions that generate escape solutions.  We give the chart of initial 
conditions of solutions for various sets of parameter values A and B representing the coefficients of the second 
degree terms in x and y, respectively, appearing in the polynomial potential, while we  retain constant, e.g.  
b=0.5, the coefficient of  the third degree term  x y2. 
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1  Introduction 
Τhe problem which we have treated here is that of  
the coupled non-linear double oscillator. Τhe 
potential V of this problem is given by the 
expression: 
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with A, B and b being constants.  The 
equations governing the motion are the 
following ones: 
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being the integral of its energy. 

 
2  Chart of the Problem Solutions 
The solutions of the problem we search here are the 
periodic solutions which are dense in the set of all 
solutions. To facilitate the task we select  to search 
those periodic solutions which are symmetric with 
respect to  Οx axis in the plane Οxy. More 
specifically those periodic orbits according to which 
the particle, under consideration, starts its motion 
perpendicularly from Ox axis. Thus, the particle 
will have a certain initial position x on Ox axis, zero 
initial position y on Oy axis, zero its initial velocity 
along Ox axis and a certain initial velocity along Oy 
axis, which is simply computed as follows: For a 
given value of energy C, and from the integral of 
energy of the particle, given by the formula (3), if 
we put  y=0 and dx/dt=0, we obtain     
                                                                         

2dy / dt 2C Ax= −                                                    (4) 
 
The quantity existing under the symbol of the square 
root in the second member of the relationship (4) is 
a positive number in the whole area of the plane (x, 
C) where the motion is permitted, whereas it is 
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annihilated along  the zero velocity curve,  which is, 
obviously, computed by the following relationship: 
 

    ( )21C Ax
2

=                                                  (5) 

 
   The search of periodic symmetric solutions of the 
problem is undertaken into a chosen rectangle of the 
plane (x, C), say for x [ ]a,a∈ −  and for C [ ]0,c∈ , 
with a 0> , c 0>  the values of which depend on the 
values of the parameters A and B. This search is 
realized by means of a fine partition of the energy 
interval of C and by another finer partition of the 
position interval of x, and subsequently by sweeping 
along x first, and next along C. More specifically, 
we proceed as follows: For a given value of the 
energy C and for a certain initial value of x we 
integrate the equations of motion (2) until the 
particle intersects the Οx axis of the plane Oxy. At 
this point of intersection the particle will possess a 
velocity along Ox axis. For the same value of 
energy C and for the next initial value of x, we 
integrate the equations of motion, until the particle 
intersects the Οx axis. If at this point of intersection 
the particle possesses a velocity with opposite sign 
along Ox axis compared with the respective one 
found from the former integration, then this means 
that there exists an intermediate initial value of x, 
which, after integration, induces the particle velocity 
along Ox axis to get the zero value. Therefore an 
intermediate initial value of x corresponds to a 
periodic symmetric orbit. The multiplicity of a 
periodic symmetric orbit is determined by the serial 
number of the intersection of the orbit with Ox axis 
where we have "perpendicularity", which means 
velocity along Ox axis equal to zero. For instance, 
we have a simple periodic symmetric orbit or a 
periodic symmetric orbit of multiplicity one, every 
time whenever we attain "perpendicularity" in the 
first intersection of the orbit with Ox axis; we have a 
double periodic symmetric orbit or a periodic 
symmetric orbit of multiplicity two, every time 
whenever we attain "perpendicularity" in the second 
intersection of the orbit with Ox axis, and so on. 
   During the procedure of searching the initial 
conditions of periodic symmetric solutions of a 
predetermined n multiplicity in the plane (x, C) we 
encounter initial conditions leading to orbits without 
the nth  intersection with Οx axis of the plane Οxy, 
namely escape solutions without nth  intersection 
with Οx axis  [1]. In the charts presented below for 
several values of parameters A and B (the value of 
parameter b being 0.5) we give, on the one hand, 
the initial conditions leading to periodic symmetric 

orbits and on the other hand, the initial conditions 
leading to escape solutions. The initial conditions 
leading to escape solutions occupy a large part of 
the area of permissible motion in the plane (x, C), 
whereas the remaining part of this area is occupied 
by initial conditions leading to periodic symmetric 
solutions. The initial conditions leading to periodic 
symmetric solutions occupy the region of order for 
specific values of the parameters A and B or, 
additionally, regions of chaos for different values of 
the parameters A and B. On the plane (x, C), for a 
specific value of C, if we say that we have order or 
chaos we mean that on the plane ( )x,x   for the same 
value of  C the invariant curves present respectively 
an image of order or chaos. 
    Example: In the chart of Figure 1 the pixels in 
magenta color, having as abscissas x = -0.9, -0.66, -
0.57, -0.5, -0.2, -0.15, -0.1, 0.32, 0.72, 0.9 and 
ordinate C=1.2, determine the boundaries of regions 
named as CHAOS, because the same exactly pixels 
in Figure 2 demarcate regions inside which the 
invariant curves present an image of chaos. 
However, on the plane (x, C) we have the 
possibility to penetrate into the content of the region  
CHAOS by computing periodic symmetric 
solutions of smaller multiplicity. 
     Example: In Figure 1, in the rectangle in 
magenta color, into the region CHAOS, we have 
computed the initial conditions of periodic 
symmetric solutions of multiplicity 10 which appear 
in red color.  By contrast, on the chart, in general, 
the initial conditions appearing correspond to 
periodic symmetric solutions of larger multiplicity,  
that is 90.   
    In Figure 1 the initial conditions leading to 
escape solutions without first, second, third, fourth, 
fifth, sixth, seventh, eighth, ninth, 90th intersection 
with Οx axis appear in red, green, blue, cyan, 
magenta, yellow, navy, purple, wine, dark yellow 
color, respectively. Additionally, the region 
ORDER and the regions CHAOS appear to consist 
of the initial conditions of periodic symmetric 
solutions, whereas the initial conditions of simple     
solutions appear in green color. In Table 1 we give 
the results of computation of the initial conditions of 
some periodic symmetric solutions appearing in 
Figure 1. We denote by X01 the initial position of 
the particle, by CINT the initial constant of energy, 
by VOUT(1) the final position at half period, by CT 
the final constant of energy  at half period and by 
TEND the time at half period. 
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                                                                       Fig. 1: Chart for A=3, B=1                               
 
 

                      
                                               
                                                       Fig. 2: Invariant curves for A=3, B=1 and C=1.2 
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                                Table 1 
 
      X01      CINT     VOUT(1)    CT      TEND 
      ----------------------------------------------------- 

0,001 0,001 0,00096     0,001    282,7314 
0,002 0,002 0,0019     0,002    282,7195 
0,002 0,003 0,002     0,003    282,7081 
0,003 0,004 0,0029     0,004    282,6962 

      -0,056   0,005    -0,056       0,005   282,9642 
0,004 0,005 0,00376     0,005    282,6843 
0,057 0,005 0,05698     0,005    282,9728 

      -0,058   0,006    -0,05798   0,006   282,9786 
0,06 0,006 0,06    0,006   282,9873 

      -0,061   0,007     -0,06099  0,007   283,0015 
       0,005    0,007     0,00481   0,007   282,6613 

0,064 0,007 0,06396     0,007    283,0192 
      -0,064   0,008    -0,064       0,008    283,0257 
       0,006   0,008     0,00557    0,008   282,6494 
       0,067   0,008     0,06697    0,008   283,038 
      -0,066   0,009    -0,06599   0,009   283,043              
       0,006   0,009     0,00597   0,009    282,6385 
       0,07    0,009      0,06997   0,009    283,0587 
      -0,069   0,01      -0,069      0,01      283,0694 
       0,007   0,01        0,00669  0,01     282,6267 
       0,073   0,01        0,07296  0,01    283,0814 
 
 

 
                      
                 Fig. 3: Chart for A=4, B=1  
 
Subsequently we increase gradually the value for 
the parameter A, while the parameter B conserves 
the same value (Β=1). In Figures 3, 4, 5 and 6, on 
the plane (x, C) we present the initial conditions of 
periodic and symmetric solutions and those of 
escape solutions for values of  A and B as they are 
referred to in the captions. Especially, in the charts 
of Figures 3 and 4 the initial conditions of periodic 
and symmetric solutions of multiplicity 90 have 
been computed, whereas in the charts of Figures 5 
and 6 the initial conditions of periodic and 

symmetric solutions of multiplicity 60 have been 
computed.                                          
 
 
 
 
                                                                        
                      
 
 
   
 
 
 
 
 
                   Fig. 4: Chart for A=5, B=1 
 
   The initial conditions corresponding to escape 
solutions without first, second, third, fourth, fifth, 
sixth, seventh, eighth, ninth intersection with Οx 
axis appear in red, green, blue, cyan, magenta, 
yellow, navy, purple, wine color, respectively. The 
initial conditions corresponding to escape solutions, 
without 90th intersection with Οx axis in the charts 
of Figures 3 and 4 and without 60th intersection with 
Οx axis in the charts of Figures 5 and 6, appear in 
dark yellow color.  Moreover the region ORDER or 
/ and the regions CHAOS formed by the initial 
conditions of periodic and symmetric solutions 
appear, likewise the initial conditions of simple 
solutions appear in green color. We note that, as A  
increases, the initial conditions of escape solutions 
occupy smaller and smaller part of the plane (x, C) 
and more specifically they extend up to the value of 
C=A/2.  
 

 
                   Fig. 5: Chart for A=8, B=1          
 
We, also, observe that the initial conditions of 
periodic and symmetric solutions for a great value 
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of A, i.e. A=16, do not form a region of CHAOS, 
but the whole region formed is characterized as a 
region  ORDER. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
                    Fig. 6: Chart for A=16, B=1 
 
                                                                                                              
                       
 
 
 
 
 
 
 
 
 
 
 
 
                      
 
                 Fig. 7: Chart for A=1, B=1                                              
 
 
For the same value of A, the region of the initial 
conditions in dark yellow color is occupied almost 
thoroughly by the region of the initial conditions in 
red color. Finally, we maintain constant the value 
for the parameter Α, for instance Α=1, while we  
increase gradually the value for the parameter Β. In 
Figures 7, 8, 9 and 10 on the plane (x, C) the initial 
conditions of periodic and symmetric solutions and 
those of escape solutions appear for values of the 
parameters A, B as they are referred to in the 
corresponding captions. In the charts of  Figures 7 
and 8 the initial conditions of periodic and 
symmetric solutions of multiplicity 120 and 300, 
respectively, have been computed.    In the charts of  
Figures 9 and 10 the initial conditions of periodic 

and symmetric solutions of multiplicity 600 and 
900, respectively, have been computed. The initial 
conditions corresponding to escape solutions                           
                                                                                                                                                   
 
 
 
 
 
 
 
 
              
 
 
 
 
 
 
                  Fig. 8: Chart for A=1, B=4 
 

 
                  
                    Fig. 9: Chart for A=1, B=9                                           
 
 
without first, second, third, fourth, fifth, sixth, 
seventh, eighth, ninth intersection with Οx axis 
appear in red, green, blue, cyan, magenta, yellow, 
navy, purple, wine color, respectively, whereas in 
dark yellow color the initial conditions 
corresponding to escape solutions without 120th  
and 300th intersection with Οx axis appear, in the 
charts of the  Figures 7 and 8, respectively and 
without 600th and 900th intersection with Οx axis, in 
the charts of the Figures 9 and 10, respectively. We 
note that, by increasing Β, the initial conditions of 
escape solutions  occupy a quite smaller part of the 
plane (x, C) and more specifically they extend up to 
the value of  C=Β²/2. Furthermore, the initial 
conditions of periodic and symmetric solutions form 
regions CHAOS, for Β=1; the area of the regions 
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CHAOS is significantly restricted for greater values 
of  Β. 
 
  

 

 

 

 

 
 
 
 
 
     
                     Fig. 10: Chart for A=1, B=12 
 
     
    
3  Conclusions 
The computation of the initial conditions of periodic 
symmetric solutions of an appropriate multiplicity, 
depending on the parameter values, and the initial 
conditions of the corresponding escape solutions 
help to set up a chart presenting the region of order 
for some parameter values or /and regions of chaos 
for other ones. 
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